
A Reusable State-Based Guidance, Navigation and Control
Architecture for Planetary Missions12

Sanford M. Krasner
Jet Propulsion Laboratory

4800 Oak Grove Dr.
Pasadena, CA 9 1 109

skrasner@jpl.nasa.gov
8 18-354-66 12

Abstract-NASA’s Jet Propulsion Laboratory has embarked
on the Mission Data System (MDS) project to produce a
reusable, integrated flight and ground software architecture.
This architecture will then be adapted by future JPL
planetary projects to form the basis of their flight and
ground software. The architecture is based on identifying
the states of the system under consideration. States include
aspects of the system that must be controlled to accomplish
mission objectives, as well as aspects that are uncontrollable
but must be known. The architecture identifies methods to
measure, estimate, model, and control some of these states.
Some states are controlled by goals, and the natural
hierarchy of the system is employed by recursively
elaborating goals until primitive control actions are reached.

Fault tolerance emerges naturally from this architecture.
Failures are detected as discrepancies between state
estimates and model-based predictions of state. Fault
responses are handled either by re-elaboration of goals, or
by failures of goals invoking re-elaboration at higher levels.
Failure modes are modelled as possible behaviors of the
system, with corresponding state estimation processes.

Architectural patterns are defined for concepts such as
states, goals, and measurements. Aspects of state are
captured in a state-analysis database. Unified Modelling
Language (UML) is used to capture mission requirements as
Use Cases and Scenarios. Application of the state-based
concepts to specific states is also captured in UML,
achieving architectural consistency by adapting base classes
for all architectural patterns.

Within the Guidance, Navigation and Control domain of
MDS, work has focussed in 3 areas:

’ U.S. Government work not protected by U.S. copyright.
* The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

Re-engineering and re-implementation of
legacy Navigation systems within an object-
oriented structure that is reusable from mission
to mission and common between flight and
ground systems;

Identification of states and mission activities
which are common across multiple missions;

Exploitation of commonality between Attitude
Control and Navigation functions, which have
historically been separated in previous JPL
missions.

These areas will be demonstrated on a simulated reference
spacecraft and mission, and then adapted by customer
missions. Early deliveries will have levels of autonomy
similar to existing JPL spacecraft, in order to demonstrate
the applicability of the state-based concepts. This
architecture should greatly simplify the implementation of
existing levels of autonomy, and should support
significantly increased autonomy in future deliveries.
Studies are ongoing to determine the mission requirements
for highly integrated attitude and trajectory control
functions, leading eventually to “6-degree-of-freedom”
control. These functions will eventually be implemented
within the MDS architecture.

The first customer mission is Europa Orbiter, to be followed
by PlutoKuiper and Solar Probe. Discussions are also
ongoing to adapt MDS for Stellar Interferometry Mission
and for control of the Deep Space Network.

First prototype demonstration will be in Nov. 1999, with
subsequent deliveries of increasing capability leading to a

mailto:skrasner@jpl.nasa.gov

delivery to the Europa Orbiter project in Nov. 200 1 . 2. STATE-BASED DESIGN

TABLE OF CONTENTS

1. INTRODUCTION
2. STATE-BASED DESIGN
3. INTEGRATED GUIDANCE, NAVIGATION AND CONTROL
4. FAILURE DETECTION AND CORRECTION
5. CURRENT STATUS AND FUTURE PLANS
REFERENCES

1. INTRODUCTION

In order to reduce the cost of developing and operating
planetary missions, NASA is attempting to build Faster,
Better, Cheaper projects. As part of this initiative, the Jet
Propulsion Laboratory has begun the Mission Data System
(MDS) project. [l] MDS attempts to reduce the cost of
mission software development and operation by taking
advantage of 2 forms of software reuse: reuse of code and
reuse of concepts or frameworks. Code is reused from
mission to mission, and common code is used in both
ground and flight applications. Common frameworks are
reused in various domains throughout the flight and ground
software. In most cases, MDS is not inventing new ways of
performing mission functions. For instance, MDS will not
pioneer new forms of attitude control or navigation. Instead,
MDS will focus on systematic and reusable ways of
describing and implementing capabilities found on previous
missions.

The MDS software architecture is “state-based”. It is
organized around the identification, estimation and control
of the states of the project system. These states include the
ground and flight segments. In general, these states are
implicit in the designs of previous missions; MDS will
focus on making these states explicit.

In addition to the state-based architecture frameworks, MDS
is divided into a number of application domains, including
the Guidance, Navigation and Control domain. In past
missions, navigation (orbit determination and control) has
been entirely a ground-based function, based on radiometric
data and optical navigation images captured by the
spacecraft; attitude control and maneuver execution has
been entirely a spacecraft-based function. On New
Millennium Deep Space 1 , optical navigation image
processing, orbit determination and some level of orbit
control planning was done onboard the spacecraft. It is
anticipated that future missions will involve more integrated
navigation and attitude control functions, ultimately leading
to coupled orbit and attitude control for rendezvous and
landing missions.

For MDS, state is defined as “a representation of the
momentary condition of an evolving system”. States may
range from the simple on-off state of a power switch to the
trajectory of a spacecraft or a planet. It may even be
possible to manage mission science data acquisition in terms
of the state of the mission data repository, e.g. whether a
particular observation has been acquired.

An iterative process of state discovery will drive the design
of the MDS frameworks, and will drive the adaptation for a
particular mission. Once a state has been identified, further
analysis of the state will identify other states that must be
defined and analyzed. States will be implemented in
software as specific instances of the general state pattern. In
object-oriented terminology, the architectural pattern for a
state is defined by a state class definition; each type of state
is a subclass of the State class, and will be instantiated in
state objects.

For each state, the following characteristics must be
identified and, in some cases, implemented in software:

State Representation and Value Domain

This defines the representation of the state (e.g. an
enumerated ON/OFF for a power switch, a continuous value
for a temperature or pressure, a quaternion for a spacecraft
attitude, etc.) as well as the range of the values the state can
assume. This range is known as the value domain of the
state, and will be the basis for goal constraints defined
below.

Goals

A state may be controllable or uncontrollable within the
context of the system being described. I f a state is
controllable, there are actions that can be taken in mission
operations to change it value. Controllable states may
include power switches (which can be controlled by
hardware commands), spacecraft attitude (which may be
controlled by thruster firings or reaction wheel activation)
or spacecraft trajectory (which may be controlled by delta-
velocity maneuvers). Uncontrollable states are externally
imposed - we can observe them but cannot change their
values. Uncontrollable states are included in the mission
system definition because their values are needed to
estimate or control the controllable states. It is possible to
control the relation of a controllable state (such as
spacecraft trajectory) to an uncontrollable state (such as the
trajectory of Jupiter). Uncontrollable states may include
equipment alignments onboard the spacecraft, or the
trajectories of the planets and asteroids.

MDS missions will be controlled by a network of goals on
controllable states. A goal is defined as “a constraint on

state” and represents an assertion about a state over a time
range; this assertion is enforced by software. A goal for a
power switch state may be that “the switch is closed from
time T1 to T2”; a goal on a spacecraft attitude may be that a
“spacecraft body vector is pointed at Jupiter from T1 to
T2”. Note that identifying a celestial body (e.g. Jupiter) as a
target implies a set of states whose values must be known to
perform that control; in this case, the states may be the
spacecraft trajectory relative to the Sun and Jupiter’s
trajectory relative to the Sun.

Since a goal represents an assertion that is enforced over a
time-span, other activities can assume that the condition
holds true. This leads to an elaboration process, in which
execution of a particular goal (e g pointing at Jupiter)
requires that other goals be enforced (e g that gyro and star
tracker power switches be maintained on).

The set of goals active on the spacecraft at a particular time
is represented in a temporal constraint network [2] . Figure 1
illustrates a simple goal network, represented as a UML

Temp rature
Thruster

G L l

I

I
I
I
I
I
I
I
I
I
I
I
I

Firing

Thruster
Temperature
Prlmitive Goal

I
I
I
I
I
I
I

\I
I

I
I
I

Thruster Heater
Power Switch

Goal

I
I
I
I
I
I
I

Y Closed

Thruster Heater
Power Swltch
PrimitiveGoal

I

\I

‘ I
I
I
I

Figure 1 - Thruster
Temperature Goal Net

activity diagram. In the temporal constraint network, each
goal is represented as an activity that occurs between two
“timepoints”; during this time interval, the state constraint
stated by the goal is enforced. A timepoint “fires”, initiating

an activity, when all of its precedent activities are
completed. Timepoints may also be constrained by earliest
and latest times, as well as smallest and largest delays
between timepoints. This allows the network to implement
absolute-time, relative-time, or event-driven control.

In this simple network, 2 states are defined - thruster heater
power switch and thruster temperature. Thruster
temperature is defined to be “ready for firing” when the
power switch has been closed for a specified period of time.
The goal on the thruster heater power switch is that it be
closed. This has invoked primitive goals that the switch is
closing (i.e. being commanded closed, followed by
measurements to determine if it is closed); followed by a
primitive goal that the switch remain closed (i.e.
periodically monitoring the switch state, and recommanding
if necessary). Reaching the “closed” states triggers a
primitive goals on the thruster temperature to be in a
“warming” state; once sufficient time has elapsed, the
temperature is declared “ready for firing” and a process
begins to keep it ready.

State Estimation, Measurement and Uncertainty
Representation

Each state object is required to provide state estimation
methods. These methods allow other objects to query the
value of a state at a particular time. States may be estimated
from measurements that are available to the software, or
may be supplied by external sources (such as ground
calibrations of device characteristics, astronomer’s
observations of planetary ephemerides, etc.)

The MDS architecture makes a strong distinction between
measurements and state estimates. A measurement is a
sample taken at a particular time. It may be a function of
several states and does not directly say anything about the
value of those states immediately before or after the sample.
A state has a value at all times. The value at any time can be
estimated, based on measurements and models of the
dynamics of the state. (Of course, some states may have
“degenerate” dynamics models - they are assumed constant.
The dynamics for a calibration state may be simply that the
value is constant between calibrations.)

In addition to state estimates, each state is also responsible
for representing the uncertainty of the estimate. Since the
representations of uncertainty are highly state-specific, the
MDS architecture requires that state estimates be capable of
responding to stereotyped queries about uncertainty, such as
the probability that a state is within a particular value
domain (range). In addition, each state must have a way of
representing that the state estimate is unknown or highly
uncertain.

Among other applications, state estimate uncertainty will be
used to control the configuration and initialization of the
spacecraft. Controllers will be able to wait until needed

estimates become available, and then initiate control. Goal
elaborations will be able to set goals on estimate knowledge
or uncertainty. Sensor and estimators will be configured to
provide estimates and enable control. These should simplify
the process of initializing the spacecraft, at launch or after a
fault. The order of events will flow naturally out of the
chains of dependency on estimates.

It is expected that estimates of state performed onboard will
be telemetered to the ground as “state models”, which
summarize the behavior of the state over contiguous time
periods. A state model may represent a curve-fit or other
approximation to the state evolution; this makes it adaptable
to successive compression methods to reduce storage and
downlink volumes.

There will also be states estimated on the ground, for
instance, spacecraft trajectories for ground-based
navigation. MDS plans to use the same framework for
ground and flight estimation. The project is also planning to
use “replication” to uplink these estimates, making them
consistent between the ground and flight systems.

State Dynamics & Measurement Models

In order to support state estimation, each state will include
dynamics models, of how the state evolves over time. This
model will include the effect of control actions as well as all
environmental factors influencing the state value. This
allows an estimator to propagate the effect of control actions
(e.g. thruster firings) and to use filters to combine state
propagations with measurements to provide state estimates.

Goal Elaborations and State Control Actions

Each controllable state must define a controller, which will
execute any control law required to enforce a goal
constraint. The state must also specify and conditions on
other states that must be enforced in order to control this
state; these are normally expressed as “subgoals” - goals
delegated to other states. As cited above, a goal to maintain
attitude may result in subgoals to maintain power to sensors
and actuators. The recursive process of elaborating goals
into nets of subgoals eventually bottoms out in “primitive
goals” which require no further elaboration

Primitive goals correspond to the action commands
typically used in sequences on previous missions; these are
executed by standard control algorithms, which are capable
of issuing power switch commands, slewing to commanded
attitudes, etc. In general, these primitive goals are expected
to follow patterns of “transitioning to desired state” (e g
“turning switch on”, “slewing to point at Jupiter”), followed
by “maintaining desired state” (e.g. “periodically checking
that switch is still on”, “holding attitude pointing at
Jupiter”). Since the desired state is specified explicitly,
failure to maintain a goal constraint can be used as the basis
for fault detection and correction.

3. INTEGRATED GUIDANCE, NAVIGATION AND
CONTROL

Why Integrated Guidance, Navigation and Control?

On previous planetary missions, attitude control
(determination and control of rotational orientation) and
navigation (trajectory determination and control) have been
treated as separate disciplines. This has been done largely
because of the need to close loops at significantly different
timescales. Attitude control requires loop times of fractions
of a second; navigation loops (from orbit determination to
maneuver execution) typically take hours to days. In
addition, navigation has required data types only available
on ground (radiometric observables) or data types requiring
large amounts of processing and human intervention (such
as optical navigation images). For ballistic (chemical-
propulsion) missions, trajectory corrections are done hours
to months apart, so it is feasible to close loops through the
ground.

Inevitably, there has been some coupling between the
attitude control and navigation disciplines. For instance,
attitude control thruster firings perturb the spacecraft
trajectory and must be incorporated into the trajectory
model. Navigation teams have routinely included both
previous and planned attitude control activities (such as
spacecraft turns) in the trajectory estimate and propagation.
Navigation software has included propulsion models (such
as thrust as a function of temperature, pressure and fuel
flow rates) and processing of thruster firing telemetry, as
needed from mission to mission. On Cassini, attitude
control thrusting has been modelled redundantly by the
Attitude Control and Navigation teams. MDS seeks to
eliminate this redundancy, and possible miscommunication,
by coordinating and reusing states and models for
propulsion, attitude, and trajectory.

With increasingly complicated missions, and increasingly
more capable onboard computers, navigation functions have
begun to migrate onto the spacecraft. 10 years ago, Galileo
carried a simplified planetary ephemeris computation to
allow pointing at the Earth or Jupiter; this required a
laborious process to translate navigation ephemerides to a
reduced-order representation. Onboard navigation was
greatly expanded on New Millennium Deep Space 1 (DS1).
DSI performs onboard processing of optical navigation
images and incorporates these, along with thrusting
perturbations, into orbit estimates. These orbit estimates are
used autonomously to compute and execute trajectory
control maneuvers, using ion propulsion and chemical
propulsion systems. Since planetary and spacecraft
ephemerides are already onboard to support navigation,
these ephemerides are used directly to provide pointing
directions, rather than separate reduced-order
representations.

Future missions will require even more integration of
attitude control and navigation functions. Ion propulsion
missions will be performing trajectory control continuously
over months, rather than at discrete times. Rendezvous and
landing operations on asteroids will be extremely sensitive
to trajectory perturbations due to thruster firings, and will
require onboard processing of navigation observables
(optical navigation images, radar distance measurements,
and even onboard radiometric measurements). Aerobraking
missions show strong relations between spacecraft
orientation and orbital changes, and require trajectory
correction maneuvers with turnarounds of hours or less.

These considerations led the MDS project to identify an
integrated Guidance, Navigation & Control (GNC) domain
to apply the MDS state-based concepts to attitude control
and navigation functions..

Next Generation Navigation

Prior to initiation of the MDS project, JPL’s
Telecommunications and Mission Operations Directorate
had begun a project to build the Multi-Mission Operational
Navigation Tool Environment (MONTE) [4]. MONTE will
replace the legacy Navigation code, some of it 30 years old,
with a multi-mission object-oriented design. MONTE is
being integrated into MDS as part of the GNC domain; it
will also be used by non-MDS missions.

Initial GN&C Capabilities

Initial GNC activities are focusing on implementing
previous levels of mission capability within the MDS
architecture. For the next 2 years, the focus will be on a
reference mission to fly a ballistic (chemical-propulsion)
interplanetary mission, with ground-based navigation; this
capability will support the interplanetary cruise phase of the
Europa orbiter mission.

The first GNC capabilities to be implemented will provide
the ability to initialize the spacecraft attitude control
capabilities. This includes activities typically done at
launch:

Detumbling the spacecraft (controlling rate using
gyros and thrusters),

Using a Sun sensor to establish Sun direction,

Using a star sensor to establish inertial pointing
reference,

Pointing a communication antenna to Earth.

Subsequent capabilities will include performance of
trajectory correction maneuvers, and addition of fault
detection and redundancy management.

MDS goal elaboration capabilities are being used to achieve
the actuator and sensor configurations necessary to support
these mission activities and to orchestrate the necessary
state transitions. The use of event-driven goal nets should
simplify the task of building launch sequences and state
transition software.

The integration of attitude control and navigation is
beginning with these initial steps. Since both Navigation
and Attitude Control deal with rotations of coordinate
frames relative to each other, common software will be used
for coordinate manipulation in both areas.

Navigation ephemerides will be used to represent spacecraft
trajectories and the trajectories of celestial bodies of
interest: Earth and other planets, asteroids, moons, etc. The
navigation system includes representations of targets on
rotating bodies. A camera onboard the spacecraft can track a
target on Jupiter’s moon Europa while the spacecraft orbits
Jupiter.

These capabilities will be integrated into the MDS
architecture by representing each of these potential targets
as a state. The state will allow users to query information
about the target (e.g. direction, distance, angular rate,
velocity) and uncertainty of this information at any time.

Trajectory targeting is traditionally done by specifying a
desired condition on spacecraft position andor velocity
relative to a celestial body. One of the long-range objectives
for MDS GN&C is to formalize these trajectory targets as
goals on one or more states. Casting the problem in this
framework should provide smoother coordination between a
ground navigation system and on-board functions and
facilitate the migration of some or all of the trajectory and
maneuver design functions from ground to the on-board
flight software.

A somewhat simpler objective will be to include “goals” on
the geometric relation between a spacecraft and a target
body. This would allow the navigation software to signal
events when particular geometric relations apply. (This
event-detection logic is already in the MONTE software.
Scientists designing observations commonly use it.) For
instance, it would be possible to trigger imaging at
particular distances from a target or at particular phase
angles. (Phase angle is the Sun-target-spacecraft angle, and
determines lighting conditions on the target). This
application of goals is somewhat counter-intuitive, since it
does not invoke any direct control actions. However, it is
consistent with the MDS notion of monitoring a condition
on a state. As with current mission design, analysis and
design would be required to determine a priori when the
desired geometry would occur.

A particularly interesting challenge will be to determine
how to represent ephemeris uncertainties in forms that are
usable by non-navigation experts. These uncertainties may

be used, for instance, in determining how many images are
required in a mosaic to cover the error ellipse for a target, or
in determining what deadband to use to maintain pointing at
a target. Ephemeris uncertainty has not been explicitly used
in previous software applications, so there is still some
uncertainty as to how it will be used.

Onboard Time Usage

With the introduction of onboard Navigation, it has become
necessary to become more rigorous about onboard
definition and usage of time. In previous missions, the
correlation of onboard clock to other time frames (e.g.
International Atomic Time or TAI) was measured by the
ground and used to adjust ground-produced products.
Spacecraft telemetry time-tags were adjusted to allow
interpretation in TAI or Universal Time Correlated (UTC).
Command sequences to the spacecraft were adjusted to
translate desired UTC times into spacecraft clock values.

With the advent of onboard ephemerides, it becomes
necessary to have an onboard time source that can provide
time in the navigation time frames. This also makes it
possible to command directly in the time frame of interest,
rather than going through the ground-based TAI-spacecraft
clock translation. This also made it possible to incorporate
late onboard navigation updates into the command
sequence, as was done with the DSl asteroid flyby.

On DS1, this was done by providing offset-and-frequency
corrections to the onboard clock, and by incorporating
occasional corrections from the ground-based clock
correlation process. Since MDS is designed to run on a
distributed onboard hardware set, with a number of
processors and local clocks, the clock-correlation process
will be generalized to allow correlation of multiple clocks,
with all correlations ultimately traceable to a TAI reference.
This reflects the MDS philosophy of finding general
patterns and reusing them extensively.

Future Capabilities in GNC

Introduction of onboard orbit determination and control
enables new capabilities in the trajectory maneuver
correction loop. Precedents for these capabilities have
already been demonstrated on DSl . Rather than relying
solely on a priori analytical models of non-gravitational
accelerations induced by thruster firings, solar pressure and
atmospheric friction (during atmospheric braking or
aerobraking phases), these perturbations can be estimated
from in situ measurements and incorporated in real-time.
More timely information can be introduced into the orbit
determination solution, and these perturbations can be
compensated in the trajectory correction maneuvers.

MDS GNC will be able to compute non-grav. accelerations
due to thruster firings, based on propellant pressure and
temperatures, and will be able to keep track of propellant

mass depletion. Chemical trajectory control maneuvers may
be terminated based on actual accumulated changes to
trajectory, rather than solely on ground-predicted times or
accelerometer data. This may simplify the process of
ground modelling of maneuvers, and should improve
accuracy of trajectory control.

4. FAILURE DETECTION AND CORRECTION

JPL planetary missions are characterized by long
communications delays, due to the long distances involved
(light-hours in some cases) and to the fact that
communication with the spacecraft cannot be maintained
continuously. For this reason, JPL has put a high priority on
fault detection, identification and reconfiguration,
commonly referred to as “fault protection”. It is anticipated
that fault protection will be incorporated within the general
MDS architecture. Since the architecture envisions the use
of behavior models, fault detection will generally work by
determining if a device or process is adhering to its models
- if its goals are being achieved. An inability to maintain a
goal may result in finding alternative or degraded modes of
operations, such as using redundant equipment or functional
redundancy for estimation or control.

If a feasible configuration (e.g. redundant equipment or
alternate modes) cannot be established to maintain a goal,
the goal can be declared as “failed”. This will result in
notification to each of the goals that are dependent on the
failed subgoal. The usual response to this failure will be re-
elaboration of the parent goal, with the new information that
certain subgoals are unachievable. Again, an alternate path
may be found, or the goal may be failed. Thus, faults will
propagate within the state/goal architecture, and
propagation will be constrained as low as possible.

5. CURRENT STATUS AND FUTURE PLANS

As of November 1999, MDS is implementing the first
prototype of an integrated application of the state-based
architecture. This “Detumble” prototype implements a
primitive goal network to switch on a simulated gyro
package and propulsion system, wait appropriate warm-up
times, and activate controllers to null spacecraft rates. No
goal elaborations are implemented, and there is no
redundancy or fault protection. This prototype demonstrates
the lowest layer of the state/goal structure, and its
interaction with traditional control laws. The Detumble
prototype has also demonstrated the application of the MDS
development process, including identification and analysis
of states, use of Unified Modelling Language to represent
operational scenario, collaborating classes and statechart
behavior, and use of code auto-generated from the UML
specification.

The next development step calls for adding goal elaboration
for the detumble activities. Following this, the GNC domain

will add incrementally add capabilities. By November 2000,
GNC plans to provide attitude control and navigation
capabilities to point at and track celestial bodies, and
perform chemical trajectory correction maneuvers.

The MONTE development and MDS integration will
continue in parallel with the onboard MDS software
development. This will support use of MONTE by non-
MDS missions; use of the navigation functions in the MDS
ground system, and eventual onboard incorporation of some
navigation functions (such as optical navigation and
maneuver planning and execution).

By November 2001, the flight software capabilities will be
extended to include detection and correction of faults and
use of redundant components. Ground navigation
components will be available for trajectory estimation and
control during interplanetary cruise. This software will be
delivered to the Europa Orbiter project as the basis for their
adaptation.

REFERENCES

[l] “Software Architecture Themes In JPL’s Mission Data
System”, D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
Proceedings of the IEEE Aerospace Conference, .Big Sky
Montana, 2000

[2] Temporal Constraint Network: A mechanism for
specifying ordering and timing of activities”, E. Gamble, E.
Gat, S. Chien, D. Dvorak, R. Rasmussen, JPL Internal
Document

[3] R. Dechter, I . Meiri, and J. Pearl, 1991. “Temporal
Constraint Networks”, Artificial Intelligence, 49,6 1-95

[4] “Next Generation Navigation Software”, R. Vaughan,
JPL Internal Document

Sanford Krasner specializes in system design and
integration of spacecraftJlight software. He has worked on
Galileo, Cassini, Mars Observer and Deep Space I mission.
He is currently the Guidance, Navigation d Control lead
for the Mission Data System project.

